Эндоспоры образуют бактерии

Эндоспоры бактерий – особый тип покоящихся клеток, в основном грамположительных бактерий. Эндоспоры формируются эндогенно, т. е. внутри материнской клетки, которая называется спорангием. Бактериальная эндоспора отличается от вегетативной клетки тем, что она характеризуется повышенной резистентностью к нагреванию, действию ультрафиолетовых лучей, антибиотиков и других факторов. Споры некоторых бактерий выдерживают кипячение в течение двух часов, они также могут длительное время сохраняться в покоящемся состоянии. Эти особенности спор являются свойствами, требующими в практической дея-

тельности человека применения особых приемов для их уничтожения.

К спорообразующим бактериям относится большое число грамполо-

жительных видов прокариот приблизительно из 15 родов, характери-

зующихся морфологическим и физиологическим разнообразием. Лучше

всего процесс спорообразования изучен у представителей родов Bacillus

Поскольку одна клетка образует одну эндоспору и увеличения числа

бактерий при ее прорастании не происходит, то спорообразование не

рассматривают как способ размножения бактерий. Эндоспоры представ-

ляют собой стадию покоя и приспособлены к перенесению неблагопри-

ятных условий. Переход бактерий к спорообразованию (споруляции) на-

блюдается обычно при истощении питательного субстрата, недостатке

источников углерода, азота, фосфора, изменении рН и т. д. Процесс спо-

рообразования энергозависим, поэтому от источника поступления энер-

гии споруляцию разделяют на эндотрофную и экзотрофную. Эндотроф-

ная споруляция осуществляется за счет внутреннего запаса энергииклетки и не нуждается в дополнительных веществах. В случае экзотроф-

ных процессов используется экзогенная энергия, поступающая извне.

Способность к образованию спор детерминируется генами spo, кото-

рых у бактерий Bacillus subtilis (по данным Г. Халворсена) более 100.

Каждый из spo-генов отвечает за те или иные стадии споруляции.

Процесс спорообразования можно разделить на три стадии или этапаПервый этап – подготовительный. В вегетативной клетке бактерий,

переходящей к спорообразованию, прекращаются ростовые процессы,

завершается репликация ДНК и изменяется метаболизм, а именно распа-

дается значительная часть белков материнской клетки, образуется спе-

цифическое для спор вещество – дипиколиновая кислота, которая не

встречается в вегетативных клеткахДипиколиновая кислота находится в эндоспорах в виде дипиколината кальция, и именно это соединение обеспечивает высокую терморезистентность спор.

Второй этап – формирование споры – начинается с особого неравного

деления клетки. Цитоплазматическая мембрана вегетативной клетки об-

разует впячивание (инвагинацию) от периферии к ее центру и отделяет

часть протопласта материнской клетки. В результате этот протопласт со-

держит один нуклеоид с участком уплотненной цитоплазмы. Образова-

ния клеточной стенки между обоими протопластами (как при обычном

делении) в данном случае не происходит. Вместо этого протопласт бу-

дущей споры обрастает цитоплазматическая мембрана материнской

клетки, а образующаяся структура носит название предспоры или проспоры.

Предспора расположена внутри материнской клетки и ограничена от

нее двумя мембранами. Каждая из этих мембран участвует в синтезе

стенки споры. Мембрана протопласта споры синтезирует снаружи от се-

бя стенку зародышевой клетки (зародыша). Мембрана, происходящая от

материнской цитоплазматической мембраны, синтезирует вовнутрь кору

споры или кортекс. Кортекс состоит из многослойного муреина, но бо-

лее кислого, чем муреин клеточной стенки материнской клетки.

Кроме кортекса и стенки зародыша, синтезируется еще и наружная

оболочка споры, которая в значительной степени представлена полипеп-

тидами. У большинства видов спорообразующих бактерий эндоспора за-

ключена еще в один дополнительный наружный слой – экзоспориум, в

состав которого входят белки, липиды, углеводы.

По мере формирования многослойных покровов предспора превра-

Таким образом, эндоспора состоит из следующих структурных эле-

ментов: нуклеоида; уплотненной цитоплазмы (за счет дегидратации, пе-

рехода белков в связанное состояние, снижения активности некоторых

ферментов и синтеза дипиколината кальция); покровных слоев, пред-

ставленных цитоплазматической мембраной, клеточной стенкой зароды-

ша, кортексом, внутренней оболочкой, наружной оболочкой, экзоспо-

риумом. Третий этап – созревание споры. Спора приобретает характерную

форму и занимает определенное положение в клетке (рис. 3). Диаметр

споры может превышать или не превышать диаметр вегетативной клет-

ки. В результате этого бактериальная клетка со спорой может принимать

форму веретена или теннисной ракетки. Споры в клетке могут распола-

гаться центрально (например, у Bacillus megaterium), субтерминально

(Clostridium botulinum) или терминально (Clostridium tetani).

Рисунок 3- Форма эндоспор и расположение их в клетках бактерий различныхвидов рода Bacillus

Споры освобождаются при лизисе спорангия. Зрелые споры не про-

являют метаболической активности. Они чрезвычайно устойчивы к воз-

действию высокой температуры, разного рода излучений и химических

агентов. Терморезистентность обусловлена, как уже отмечалось, очень

низким содержанием воды и наличием дипиколината кальция.

При попадании в благоприятные условия споры прорастают в вегета-

тивные клетки. Прорастания спор начинается с поглощения воды и гид-

ратации структур споры, сопровождающихся активацией ферментов и

возрастанием дыхания. Литические ферменты разрушают многослойные

покровы споры, в среду выделяются дипиколинат кальция, аминокисло-

ты и пептиды. Спора при этом теряет до 25–30 % сухой массы. В месте

разрыва оболочки споры образуется ростовая трубка новой вегетативной

клетки. В формировании клеточной стенки молодой клетки участвует

внутренняя мембрана споры и частично кортекс. Прорастание спор длит-

Прорастание спор можно индуцировать, подвергнув их прогреванию

до 60–70 ºС в течение нескольких минут или кратковременному кипяче-

нию (10 мин при 100 ºС). Тепловой шок должен проводиться непосред-

ственно перед высевом спор, так как процесс активации обратим.

К другим покоящимся формам бактерий относятся цисты, экзоспоры,

миксоспоры. Как и эндоспоры, все эти покоящиеся формы предназначе-

ны для перенесения бактериями неблагоприятных условий. Экзоспоры

возникают путем почкования материнской клетки. Они сходны по своим

свойствам с эндоспорами бацилл. Образование экзоспор характерно для

метанокисляющих бактерий. Цисты – это шарообразные толстостенные

клетки, формирование которых характерно для бактерий рода Azotobacter.

В цисту превращается вся вегетативная клетка. Миксоспоры образу-

ются также путем превращения всей клетки. Формирование миксоспор

характерно для бактерий рода Myxococcus.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9136 — | 7298 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Эндоспо́ры — покоящиеся формы бактерий, которые образуются в результате скоординированной дифференцировки двух дочерних клеток, образовавшихся при удвоении генома исходной бактерии, причём одна из них проникает внутрь цитоплазмы другой дочерней клетки, которая становится внешней. Далее внешняя дочерняя клетка (её иногда называют спорангием) погибает программируемой гибелью, а внутренняя клетка (преспора) становится собственно эндоспорой и входит в состояние максимального физиологического покоя, при котором все физиологические процессы внутри споры останавливаются (гиперанабиоза). Она становится чрезвычайно резистентной к неблагоприятным условиям окружающей среды и может сохранять жизнеспособность в течение длительного времени [1] .

Читайте также:  Сколько должна набрать беременная за всю беременность

Описаны два случая, когда материнская клетка даёт не одну, а две эндоспоры. Так, крупная (35 мкм длиной) некультивируемая бактерия Metabacterium polyspora, обитающая в желудочно-кишечном тракте некоторых грызунов, образует до девяти эндоспор на спорангий. Другая гигантская некультивируемая бактерия, Epulopiscium sp. (она может достигать размера 60 × 300 мкм), обитающая внутри тропической рыбы-единорога Naso tonganus [en] , образует две эндоспоры в одном спорангии [2] .

Содержание

Спорогенные бактерии [ править | править код ]

Строение эндоспоры [ править | править код ]

Основные структурные элементы зрелой эндоспоры:

  • цитоплазматический компартмент, или кор;
  • комбинированная клеточная стенка, состоящая из внутренней стенки и наружной стенки (кортекса);
  • цитоплазматическая мембрана эндоспоры (внутренняя мембрана);
  • цитоплазматическая мембрана спорангия (внешняя мембрана);
  • внутренний и внешний споровые покровы;
  • наружный покров (экзоспорий) [4] .

Расположение эндоспор внутри материнской клетки может быть различным, и тип спорообразования в некоторых случаях используют при идентификации неизвестной культуры. Иногда формирующаяся эндоспора достигает таких размеров, что расширяет спорангий посередине или с одного из концов [5] .

Кор эндоспоры содержит хромосому и небольшие количества компонентов аппарата трансляции: рибосомы, тРНК, сопутствующие ферменты и белковые факторы. При этом нестабильные компоненты клеток, такие как мРНК и нуклеозидтрифосфаты, отсутствуют, но есть запасы стабильных предшественников АТФ — АДФ и АМФ [6] .

Сложная система покровов эндоспоры делает её высокорезистентной к различным неблагоприятным факторам. Её белковые покровы перекрывают доступ к кортексу ферментам, разрушающим пептидогликан (например, лизоциму), а также защищают спору от агрессивных химических реагентов, таких как хлороформ. Мембраны спорангия и споры создают барьер проницаемости вокруг кора, не давая пройти к нему гидрофильным соединениям массой более 300 Да. Кроме того, низкое содержание воды в коре препятствует депуринизации [en] геномной ДНК. Катионы двухвалентных металлов (прежде всего кальция) хелатируются молекулами дипиколиновой кислоты [en] , которые синтезируются в спорангии, а потом доставляются в кор, что обеспечивает дополнительную защиту для ДНК. В коре эндоспор некоторых бактерий имеются особые белки, связывающиеся с ДНК и защищающие её не только от депуринизации, но и от разрушения сахарофосфатного остова. Наконец, прорастание эндоспоры сопровождается интенсивной репарацией повреждений в ДНК, накопленных во время периода покоя [7] .

Споруляция [ править | править код ]

Цикл спорообразования протекает гораздо дольше (около 7 ч при 37 °С), чем деление с образованием других специализированных клеток. У Bacillus subtilis цикл споруляции включает семь стадий (0—VII), которые были предложены в 1960-х годах французским учёным Антуанетом Ритером.

  • Стадия 0. Исходная вегетативная клетка.
  • Стадия I. В настоящее время эту стадию не выделяют, так как характерных морфологических признаков она лишена, а мутанты, не способные её проходить, неизвестны.
  • Стадия II подразделяется на три этапа. На этапе IIi происходит септирование: в материнской клетке образуется споровая септа и происходит асимметричное бинарное деление, при нём образуются протопласты разного размера. На этапах IIii—IIiii больший протопласт начинает поглощать меньший.
  • Стадия III. Поглощение завершается, и меньший протопласт (преспора) образуется в цитоплазме большей клетки (спорангия).
  • Стадия IV. Происходит синтез модифицированной клеточной стенки — кортекса, который окружает преспору.
  • Стадия V. В цитоплазме спорангия откладываются белковые покровы будущей эндоспоры.
  • Стадия VI. Стадия морфологически не выражена, во время неё происходит созревание эндоспоры. Она приобретает повышенную резистентность к факторам окружающей среды, входит в гиперанабиоз, становится способной к прорастанию.
  • Стадия VII. Спорангий подвергается программируемой гибели и частично лизируется, из-за чего зрелая эндоспора выходит наружу [8] .

Уникальная споровая септа закладывается при симметричном образовании двух Z-колец на ¼ и ¾ материнской клетки. Одно из них случайным образом выбирается при участии белка SpoIIA, второе разрушается. Далее в области Z-кольца, как при обычном делении, происходит кольцевая инвагинация мембраны, впоследствии заполняющаяся пептидогликаном. Далее он лизируется, и в результате сестринские компартменты оказываются разделёнными только двумя мембранами. Хромосома будущей эндоспоры, по последним данным, проникает в меньший компартмент после смыкания септы. Её перенос опосредует ДНК- транслоказа [en] FtsK/SpoIIIE, формирующая в мембранах компартментов два сквозных кольцевых гексамерных канала, и C-концевые домены канальцевых белков снабжают процесс энергией АТФ. Процесс поглощения меньшего компартмента большим в целом соответствует эндоцитозу (который вообще бактериям не свойственен), его молекулярные механизмы изучены слабо [9] .

В лабораторных условиях бактерии приступают к споруляции, когда в среде заканчивается легко метаболизируемый источник углерода, азота или фосфора, однако триггеры споруляции в естественной среде обитания бактерий неизвестны. Ключевое событие начала споруляции — фосфорилирование транскрипционного фактора Spo0A с помощью аутофосфорилирующих [en] протеинкиназ. Фосфорилирование Spo0A может запускаться тремя путями:

  • Через киназу KinA, которая регистрирует окислительно-восстановительный и энергетический статус клетки.
  • Через снижение уровня ГДФ и ГТФ в клетке, что свидетельствует о нехватке питательных веществ.
  • Через белки, связанные с чувством кворума, то есть при достижении определённой плотности популяции бактерий [10] .

В условиях, не благоприятствующих споруляции, фосфорилированный Spo0A дефосфорилируется фосфатазой Spo0E. Активный фосфорилированный Spo0A активирует транскрипцию регуляторов споруляции SpoIIA, SpoIIE и SpoIIG. Клетки, содержащие фосфорилированный Spo0A, выделяют белки, убивающие соседние клетки с неактивным Spo0A, чтобы использовать при споруляции их ресурсы. Также в запуске споруляции играет роль сигма-фактор σ H , контролирующий гены spoIIID и spoIIIM, их продукты участвуют в образовании споровой септы. После формирования септы активность Spo0A возрастает в спорангии, но снижается в преспоре. Далее в преспоре активируется сигма-фактор σ F , а в спорангии — σ E . Также в преспоре синтезируется σ G , который активируется только при завершении поглощения, а в спорангии на финальных стадиях спорообразования синтезируется сигма-фактор σ K . Совместно сигма-факторы преспоры и спорангия активируют экспрессию генов, необходимых для формирования эндоспоры [11] .

Состояние покоя и прорастание [ править | править код ]

Находящаяся в состоянии покоя эндоспора характеризуется гиперанабиозом и гиперрезистентностью. Она не проявляет метаболической активности, не содержит важнейших метаболитов, таких как АТФ и ацетил-CoA, находящиеся в ней ферменты неактивны. В состоянии гиперанабиоза споры могут сохранять жизнеспособность на протяжении огромного периода времени. Так, эндоспоры сибирской язвы в скотомогильниках сохраняют жизнеспособность в течение 500 лет, споры актиномицетов — до 7500 лет [12] . Имеются сведения, что споры Bacillus sp., добытые из кристаллов поваренной соли в Нью-Мехико, сохраняли жизнеспособность на протяжении 250 млн лет. Эндоспоры не погибают под действием высокой и низкой температуры, при высушивании, большом гидростатическом давлении, при УФ- и γ-излучении, под действием сильных окислителей, при повышенной кислотности и других неблагоприятных условиях [13] . Споры некоторых бактерий выдерживают даже кипячение в течение часа и более, поэтому растворы и инструменты стерилизуют в автоклавах с температурами стерилизации до 121 °C [12] .

Читайте также:  Высыпания на лице какие анализы сдать

При благоприятных условиях эндоспора прорастает, то есть выходит из спорангия и превращается в нормальную вегетативную клетку. Индукторы прорастания могут быть как физиологическими (некоторые аминокислоты и сахара, пуриновые нуклеозиды и другие соединения или их смеси), так и нефизиологическими (минеральные соли, экзогенный дипиколинат кальция, лизоцим, катионные детергенты, сублетальный тепловой шок [en] , давление от 100 до 600 МПа). Прорастание начинается через секунды после воздействия индуктора и далее от него не зависит. Сначала из эндоспоры выходят протоны, ионы калия, натрия и цинка, дипиколиновая кислота с хелатированными ионами Ca 2+ , входит вода. Далее с помощью специальных ферментов лизируется пептидогликан кортекса, продолжается регидратация, при которой кор набухает и стенка растягивается. Наконец возобновляется нормальный метаболизм и биосинтез макромолекул [14] .

Визуализация [ править | править код ]

Эндоспоры хорошо просматриваются при помощи как светового, так и электронного микроскопа. Так как эндоспоры непроницаемы для многих красителей, их визуализируют как неокрашенные тельца на фоне остального прокрашенного содержимого бактериальной клетки. Существуют, однако, методы дифференциального окрашивания спор [en] , с помощью которых споры становятся видны в световой микроскоп как синие тельца в розовой цитоплазме [12] .

По определителю Берджи данные организмы объединены в группу 18 -грамположительные палочки и кокки, образующие эндоспоры.

Данная группа создана для удобства; ее таксономические связи в настоящее время неясны. Клетки в форме палочек или кокков и иногда нитей, диаметром 0,3—2 мкм. Большинство представителей окрашиваются по Граму положительно и обладают толстой клеточной стенкой грамоложительного типа. Клетки обычно подвижные за счет перитрихиальных жгутиков; образуют устойчивые к нагреванию, сильно преломляющие свет эндоспоры. Эндоспоры покрыты непроницаемой оболочкой и слабо окрашиваются обычными красителями, но поддаются окрашиванию специальными методами. Эндоспоры легко спутать с липидными включениями. Количество эндоспор может быть незначительным. Целесообразно подтверждать природу визуально обнаруженных эндоспор, проверяя для этого культуры на выживание после 10-минутного прогревания при 70—80°С (критерий — последующий рост в благоприятных условиях). Метаболизм и экология представителей группы сильно варьируют. Многие штаммы Clostridium спорулируют очень слабо и дают слабую положительную окраску по Граму.

2. АЭРОБНЫЕ СПОРООБРАЗУЮЩИЕ БАКТЕРИИ (Род Bacillus)

Прямые палочки, 0,5—2,5 х 1,2—10 мкм, с закругленными или «обрубленными» концами, часто в парах или цепочках. Грамположительные. Подвижные за счет перитрихиальных жгутиков. Эндоспоры овальные или иногда сферические либо цилиндрические, высокоустойчивые ко многим неблагоприятным воздействиям. В клетке образуется не более одной споры. Споруляция не подавляется в атмосфере воздуха. Аэробы или факультативные анаэробы. Отношение к повышенной температуре, рН и солености сильно варьирует. Хемоорганотрофы; метаболизм бродильного или дыхательного типа. Обычно каталазоположительные. Обнаруживаются в раз­нообразных местообитаниях; некоторые виды патогенны для позвоночных или беспозвоночных.

Типовой вид: Bacillus subtilis.

Большинство аэробных спорообразующих бактерий являются всеядными хемогетеротрофами, способными использовать в качестве субстратов, окисляемых при дыхании, разнообразные простые органические соединения (сахара, аминокислоты, органические кислоты). Некоторые из них могут также сбраживать углеводы. Отдельные виды не требуют органических факторов роста, другие нуждаются либо в аминокислотах, либо в витаминах группы В, либо в тех и других. Большинство аэробных спорообразующих бактерий — мезофиллы с температурным оптимумом от 30 до 45°, хотя имеется и ряд термофильных представителей, растущих при температуре вплоть до 65°.

Мезофильные виды рода Bacillus можно разделить на три группы, различающиеся по структуре и внутриклеточной ло­кализации эндоспор (таблица 2).

Таблица 2 – Группы мезофильных видов рода BACILLUS

Исходя из размеров клеток и наличия или отсутствия поли-р-оксимасляной кислоты в качестве запасного клеточного вещества, из группы I можно выделить подгруппы В. subtilis и В. cereus (таблица 3).

Таблица 3 – Отличительные признаки В. SUBTILIS и В.CEREUS

Подгруппа В. cereus: ширина вегетативных клеток больше 1 мкм, образуют в качестве запасного вещества поли-3-оксимасляную кислоту

Большинство видов группы I может расти в анаэробных условиях за счет использования сахаров. Им присущ характерный тип брожения: основными конечными продуктами его являются 2,3-бутандиол, глицерин и С02; кроме того, образуются небольшие количества молочной кислоты и этанола.

В. subtilis в отличие от большинства других видов группы I не может расти в анаэробных условиях за счет использования глюкозы; на воздухе этот вид сбраживает глюкозу с образованием больших количеств 2,3-бутандиола. В. licheniformis может расти в анаэробных условиях за счет использования несбраживаемых органических субстратов при наличии нитрата, поскольку способен к активной денитрификации. Этим свойством обладает только данный вид Bacillus.

Характерными представителями группы I являются В. cereus, одна из самых распространенных почвенных аэробных спорообразующих бактерий, и два родственных патогена — В. anthracis и В. thuringensis. У всех этих трех видов эндоспоры заключены в неплотно прилегающий наружный чехол, называемый экзоспориумом; другие бациллы такого чехла не имеют. Некоторые штаммы В. cereus образуют характерные неплотные расползающиеся колонии, отдаленно напоминающие колонии грибов. В. anthracis является возбудителем сибирской язвы — заболевания крупного рогатого скота и овец, передающегося и людям. Это одна из немногих спорообразующих бактерий, являющихся истинным паразитом в том смысле, что она может развиваться в организме животного-хозяина. Кроме патогенных свойств, биохимический механизм которых подробно исследован, В. anthracis отличается от В. cereus полной неподвижностью.

В. thuringensis — возбудитель паралитического заболевания у гусениц многих чешуекрылых насекомых. Параличи возникают в результате поедания ими растительной пищи, на поверхности которой имеются споры или спорулирующие клетки этого вида бактерий. Каждая спорулирующая клетка В. thuringensis образует примыкающий к споре правильный бипирамидальный белковый кристаллик, который высвобождается вместе со спорой при автолизе родительской клетки. Белок, образующий кристаллик, токсичен для насекомых. Поскольку околоспоровый белок В. thuringensis токсичен для личинок большого числа чешуекрылых насекомых, но не токсичен для позвоночных, препараты спорообразующих кле­ток этого организма нашли широкое применение в сельском хозяйстве в качестве инсектицида.

Два основных вида Bacillus группы II, В. polyтуха и В. macerans, образуют споры, обладающие характерной толстой наружной оболочкой с выростами, отчего в разрезе спора имеет звездчатый вид. Оба вида растут за счет брожения, расщепляя крахмал и пектины, а также моносахариды; интенсивный рост возможен только при наличии соответствующего углевода. В. polymyxa осуществляет бутандиоловое брожение, химически отличное от брожения у бацилл группы I: кроме 2,3-бутандиола в качестве основных продуктов брожения образуются этанол, СО2 и Н2. Продук­тами сбраживания сахаров у В. macerans являются этанол, ацетон, муравьиная кислота, СО2 и Н2. Образование Н2 в качестве основного конечного продукта и неспособность образовывать глицерин отличает процесс сбраживания сахаров этими видами от сбраживания его бактериями группы I. Другим отличительным признаком и В. polymyxa, и В. macerans является способность фиксировать N2 при росте в анаэробныхусловиях; пока это единственные известные виды Bacillus обладающие данным свойством.

Читайте также:  Срочные контрацептивы для женщин

Виды Bacillus группы III, для которых характерно образование сферических спор, локализованных у одного из полюсов спорулирующей клетки, по нескольким физиологическим и метаболическим признакам образуют отдельную подгруппу бацилл. Пептидогликан их клеточной стенки имеет другую химическую структуру, чем пептидогликан других аэробных спорообразующих бактерий. Виды Bacillus группы III не способны к брожению и к эффективному использованию углеводов в качестве источников энергии при дыхании. Основны­ми субстратами дыхательного метаболизма являются аминокислоты и органические кислоты. Многие (хотя и не все) виды образуют большое количество уреазы, катализирующей гидролиз мочевины:

Хотя эта реакция не приводит к синтезу АТФ, она имеет важное физиологическое значение для бацилл, расщепляющих мочевину. Основной представитель этой группы, В. pasteurii, не может расти на обычных сложных средах (например, в питательном бульоне) при рН, равном 7, без добавления мочевины.Мочевину можно заменить аммиаком при высоком исходном рН (8,5). Никакой другой моновалентный катион заменить аммиак не может, причем он необходим В. pasteurii и для дыхания, и для роста. Следовательно, фактически потребность в мочевине отражает специфическую потребность В. pasteurii в аммиаке и высоком рН. К В. pasteurii в метаболическом и физиологическом отношении, а также по составу клеточной стенки весьма близок единственный вид рода Sporosarclna, S. ureae.

3. АНАЭРОБНЫЕ СПОРООБРАЗУЮЩИЕ БАКТЕРИИ: РОД CLOSTRIDIUM

Палочки, 0,3—2,0 x 1,5—20,0 мкм, с закругленными или иногда заостренными концами, часто расположенные в парах или коротких цепочках. Как правило, плеоморфные. В молодых культурах обычно окрашиваются по Граму положительно. Чаще всего подвижные за счет перитрихиальных жгутиков. Образуют овальные или сферические эндоспоры, обычно растягивающие клетки. Большинство видов хемоорганотрофные; некоторые могут также расти хемоавтотрофно или хемолитотрофно. Могут быть сахаролитическими, протеолитическими, обладать обоими этими свойствами или ни тем, ни другим. Из углеводов или пептона обычно образуют смесь органических кислот и спиртов. Не осуществляют диссимиляционную сульфатредукцию. Обычно каталазоотрицательные и облигатные анаэробы. Рост на воздухе, если и возможен, то скудный, а споруляция подавлена. Метаболически весьма разнообразны; оптимальная температура для роста 10—65°С. Широко распространены в природных средах. Многие виды образуют сильные экзотоксины. Некоторые виды патогенны для животных и человека в результате либо раневой инфекции, либо попадания в организм токсинов.

Типовой вид: Clostridium butyricum.

Анаэробные спорообразующие бактерии, осуществляющие брожение (род Clostridium), были открыты Пастером в середине XIX в., когда он обнаружил, что некоторые из этих организмов осуществляют сбраживание сахаров, сопровождаемое образованием масляной кислоты. Вскоре было показано, что клостридии являются основными агентами, вызывающими анаэробное расщепление белков (гниение). К концу XIX в. стало очевидным, что некоторые клостридии вызывают ряд заболеваний у человека и животных. Как и другие представители этой группы, патогенные клостридии — это нормальные обитатели почвы; они почти не способны заселять организм животного: заболевания, вызываемые ими, возникают вследствие образования разнообразных высокотоксичных белков (экзотоксинов). Так, ботулизм (вызываемый С. botulinum), является чистыми интоксикациями. Другие серьезные заболевания, вызываемые клостридиями, — столбняк (возбудитель — С. tetani) и газовая гангрена (вызываемая не­сколькими другими видами клостридиев) — являются результатом раневых инфекций; повреждение тканей создает анаэробные условия, обеспечивающие локальный рост этих организмов и образование токсинов. Некоторые токсины клостридиев (вызывающие симптомы ботулизма и столбняка) являются сильными ингибиторами нервных функций. Другие (вызывающие газовую гангрену) представляют собой ферменты, разрушающие ткани; среди этих ферментов имеются лецитиназы, гемолизины и разнообразные протеазы.

К настоящему времени описано более 60 видов Clostridium, однако принятое сейчас таксономическое подразделение этой группы бактерий нельзя признать удовлетворительным. Наиболее надежную основу для такого подразделения дает, по-видимому, чрезвычайно большое разнообразие механизмов диссимиляции у бактерий этого рода. Поэтому их описание будет проведено здесь на основании прежде всего именно этих свойств.

Многие клостридии сбраживают растворимые углеводы, крахмал или пектин с образованием уксусной и масляной кислот, СО2 и Н2. Эти маслянокислые бактерии плохо или совсем не растут в сложных средах в отсутствие сбраживаемого углевода. Для данной подгруппы характерны еще два отличительных признака: в качестве клеточного запасного вещества они синтезируют крахмалоподобный полисахарид. Отличительной особенностью многих видов маслянокислых бактерий является их способность весьма эффективно фиксировать молекулярный азот.

АНАЭРОБНАЯ ДИССИМИЛЯЦИЯ КЛОСТРИДИЯМИ АМИНОКИСЛОТ

Многие виды Clostridium могут хорошо расти в сложных средах, содержащих пептоны или дрожжевой экстракт, в отсутствие сбраживаемых углеводов. Эти организмы осуществляют разложение азотистых соединений (гниение) в природе. К, ним относятся также основные патогенные клостри-дии (С. botulinum, С. tetani и С. perfringens). Рост в сложных средах сопровождается образованием аммиака, С02, Н2, жирных кислот и множества других летучих соединений, часто обладающих неприятным запахом.

Многие клостридии, сбраживающие аминокислоты, могут сбраживать и углеводы. Эти субстраты подвергаются типичному маслянокислому сбраживанию. Очевидно, что клостридии, способные сбраживать глутаминовую кислоту и превращать глюкозу в пировиноградную кислоту по пути Эмбде-на — Мейергофа, обладают всем набором ферментов для осуществления маслянокислого брожения. Однако многие клостридии, сбраживающие аминокислоты, совершенно неспособны сбраживать углеводы: примерами таких организмов являются С. tetani и С. histolyticum. Следовательно, имеется широкий спектр бактерий, различающихся по характеру сбраживаемых субстратов, начиная от маслянокислых бактерий с низкой способностью сбраживать аминокислоты или не обладающих такой способностью вообще и кончая такими организмами, как С. tetani и С. histolyticum, которые неспособны сбраживать углеводы.

Большое число клостридиев, сбраживающих аминокислоты, являются протеолитическими организмами и обладают разнообразными протеазами. Часто один организм образует несколько разных гидролитических ферментов этого типа с разной субстратной специфичностью. Для представителей данной группы бактерий, получающих энергию за счет сбраживания аминокислот, протеолиз, конечно, является необходимым первоначальным этапом образования из белков сбраживаемых субстратов. Однако из этого отнюдь не следует, что все клостридии, сбраживающие аминокислоты, являются протеолитическими организмами. Есть и непротеолитические виды, рост которых зависит от наличия в качестве субстратов свободных аминокислот.

СБРАЖИВАНИЕ АЗОТСОДЕРЖАЩИХ ЦИКЛИЧЕСКИХ СОЕДИНЕНИЙ

Некоторые клостридии могут получать энергию за счет сбраживания циклических соединений, в частности пуринов, пиримидинов и никотиновой кислоты. Сбраживание пуринов (гуанина, мочевой кислоты, гипоксантина, ксантина) осуществляют виды с высокоспециализированными пищевыми потребностями; они неспособны сбраживать другие субстраты. Продуктами брожения являются уксусная кислота, глицин, муравьиная кислота, СО2 или другие вещества-предшественники.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

alex10felixuzi11

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх
Adblock detector